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Preface

The Committee on the Space Station of the National Research Council, in
considering space station engineering and design issues, found a need for a concise
assessment of the capabilities of existing and planned space stations. This report attempts
to meet that need by providing information and the important technical parameters for the
major crewed space facilittes—with emphasis on the Mir Space Station and the
International Space Station. Our intent is to provide a data source for easy reference that
will enable initial comparisons of the adequacy of these systems to satisfy a complex and
evolving set of users' expectations.

Compilation of the data for this report began just prior to the Space Station
Freedom redesign with the primary goal of informing the community on the design and
capabilities of the Mir and Freedom space stations. As the redesign was carried out by
NASA, and after it resulted in the International Space Station, we continued to compile
data to document the current designs as well as other existing and historical space
platforms (e.g., the Space Shuttle with Spacelab, and Skylab). The committee believes
that this summarization of information and parameters supporting space station
capabilities will be helpful to those interested in understanding and utilizing the
International Space Station.

Aty "N

Frank Lemkey A. Thomas Young
Chairman, Study on the Chairman, Committee on the
Capabilities of Space Stations Space Station
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Introduction

Over the past two years the U.S. space station program has evolved to a three-
phased international program, with the first phase consisting of the use of the U.S. Space
Shuttle and the upgrading and use of the Russian Mir Space Station, and the second and
third phases consisting of the assembly and use of the new International Space Station.
Projected capabilities for research, and plans for utilization, have also evolved and it has
been difficult for those not directly involved in the design and engineering of these space
stations to learn and understand their technical details. The Committee on the Space
Station of the National Research Council, with the concurrence of the National
Aeronautics and Space Administration, undertook to write this short report in order to
provide concise and objective information on space stations and platforms—with
emphasis on the Mir Space Station and International Space Station—and to supply a
summary of the capabilities of previous, existing, and planned space stations.

In keeping with the committee charter and with the task statement for this report,
the committee has summarized the capabilities of five major space platforms. By
providing the summary, together with brief descriptions of the platforms, the committee
hoped to assist interested readers, including scientists and engineers, government
officials, and the general public, in evaluating the utility of each system to meet perceived
user needs. Since to date no agreed-on definitive set of requirements for a space station
exists, the ability to evaluate existing or proposed capabilities against a complex and
evolving set of user expectations may be useful in defining research projects. The
committee has not made any judgments on the relative merits of research projects
proposed or on the abilities of each space platform to support specific research projects.

This chapter introduces the space stations and platforms considered in the report:
International Space Station, the Mir Space Station, the Space Shuttle (with a Spacelab or
Spacehab module in its cargo bay), the Space Station Freedom (which was redesigned to
become the International Space Station in 1993 and 1994), and Skylab. Skylab, as the
only U.S. space station to date, is included because the operational experience gained
from this program is relevant, as are the Space Shuttle program and the Space Station
Freedom design effort, to NASA's ability to design and develop the International Space
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2 THE CAPABILITIES OF SPACE STATIONS

Station. Chapter 2 discusses space station research with emphasis on the anticipated
research planned for the International Space Station. Chapter 3 provides data and
information on the various space stations and platforms introduced in this chapter and
defines the parameters used to describe them. Chapter 4 describes the Mir Space Station
and the research that has been performed on board Mir since its launch in 1986. The
previous Soviet experience with the Salyut space stations has been superseded by over
nine operational years of Mir. Chapter 5 describes the basic aspects of the design and
research program planned for the International Space Station. Chapter 6 highlights the
differences among the space stations and platforms described in the report, with an
emphasis on the differences between International Space Station and its predecessors.
The Appendix provides the statements of task for this study and for the Committee on the
Space Station.

SPACE STATIONS AND PLATFORMS
The International Space Station

The International Space Station (ISS) has evolved from the space station program
of the United States and from the Mir Space Station program of the former Soviet Union
and the current Russian Federation. The U.S. program responded to direction from
President Reagan in 1984 that called for a space station to be built within a decade. This
initial program, which in 1988 was named Space Station Freedom (SSF ), was led by the
Headquarters of the National Aeronautics and Space Administration (NASA), with
design and development separated into four "work packages" awarded to four separate
contractor teams managed by four NASA centers. The program has been redesigned and
reorganized several times since its inception. The SSF program was a collaborative effort
of the United States, the member nations of the European Space Agency (ESA), Japan,
and Canada. The Mir program has evolved over a 24-year Soviet and Russian history of
supporting long-duration manned presence in low Earth orbit.

In March 1993, congressional and administration responses to projected cost
overruns in the SSF program, combined with increased pressures on the federal budget,
forced another redesign to cut the cost and reduce the complexity of that design and
program. This redesign resulted in Space Station Alpha in September 1993. More
Russian components were added to the design, and in late 1993 Space Station Alpha
became the International Space Station Alpha. In recent months "Alpha" has been
dropped and the program and design are now referred to as the International Space
Station. This program is led by a Program Director at NASA Headquarters, Washington,
D.C., and carried out by a special NASA program office and a prime contractor, Boeing,
located at NASA's Johnson Space Center, Houston, Texas.

The Russian Space Agency will provide the baseline modules for the initial
assembly of ISS, the Functional Cargo Block (FGB) module, and a service module
similar to the core of the current Mir Space Station, as well as a life-support module,
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three research modules, a docking and stowage module, a science power platform with
solar arrays, and the Soyuz crew transfer and Progress cargo transport vehicles. The FGB
is to be purchased from Russia by Boeing for NASA, and it will be U.S.-owned. NASA
will provide the elements of the central truss with hardware for distributed systems
providing functions including thermal control and electric power distribution, as well as
the large photovoltaic (PV) arrays that will track the Sun as ISS orbits the Earth. NASA
will complete the space station configuration with habitation and laboratory modules
containing hardware for support of the crew and much of the program's research
objectives. Additional laboratory modules will be provided by the ESA and the National
Space Development Agency of Japan (NASDA), and Canada will supply a robotic
mobile servicing system.

NASA separates the current International Space Station program into three
phases. Phase 1, which is primarily the joint use of the Mir Space Station by Russia and
the United States, began in 1994 with the flight of the first cosmonaut on the Space
Shuttle. Phase 1 has continued during 1995 with the addition of the Spektr module
(equipped with some U.S. hardware for research) to Mir and the first docking of the
Space Shuttle at Mir. Phase 1 is scheduled to continue through September 1997 with a
series of six more Space Shuttle missions to Mir. Phase 2 is to begin in November 1997
with the launch of the first element of the ISS, the FGB. Phase 3 is to begin in 1999,
when the U.S. Laboratory Module is scheduled to be fully equipped and able to be used
for research. Figure 1 shows ISS in its assembly-complete configuration, and the data in
Table 1 in Chapter 3 describe ISS at the end of this phase (scheduled for June 2002).
NASA states that ISS will be operable for at least 10 years after its assembly is
completed. 1SS will be the largest space vehicle ever constructed as well as an
unprecedented example of international cooperation on a highly complex project.
Construction of ISS's major elements is currently underway.

The Mir Space Station

Mir is the last of 10 space stations built and launched by the Soviet Union,
beginning in 1971. It is composed of a core module that was launched in 1986 and
several smaller modules that were launched subsequently. Currently, it is operated by the
Russian government and the Russian industrial enterprise, RKK (Rocket Space
Corporation) Energia. The late-1995 parameters described in Table 1 in Chapter 3, and
the configuration shown in Figure 2, are based on the U.S.-Russian program for
cooperation in human space missions, which includes improvements of Mir as a
precursor to the ISS. The first phase of cooperation between Russia and NASA adds two
more Russian-made modules, Spektr and Priroda, equipped with U.S. and Russian
payloads as well as new PV arrays providing increased electric power to the Mir. The
first of these modules, Spektr, docked with Mir in June 1995. The first of seven planned
Space Shuttle missions to dock with Mir, STS-71, took place in June and July of 1995.
These missions are to continue through late 1997, just prior to the launch of the
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INTRODUCTION 5

first component of ISS. The information in Table 1 in Chapter 3 describes Mir as it is
projected to be after the Priroda module is attached, and Chapter 4 describes the Mir
Space Station in detail.

NS>
Soyuz-TM ,‘é’f’;\:&

V. il './
Kristall
%

Soyuz-TM

Sofora ‘;,; Rapana Girder

\:
VDU Thruster Unit

Figure 2 The Mir Space Station (tentative 1996 configuration).
Courtesy of Daniel James Gauthier.



6 THE CAPABILITIES OF SPACE STATIONS
The Space Shuttle with a Spacelab or Spacehab Module

In operation since 1981, the Space Shuttle is the only operating reusable piloted
space vehicle. (The Russian Buran vehicle was designed to be reusable and operated with
a human crew, but was flown only once without a crew in 1988.) The Space Shuttle
information in Table 1 in Chapter 3 describes the existing operational Space Shuttle
equipped with a Spacelab module (built by the ESA), or a Spacehab module (built by a
private U.S. company), in its payload bay. Both modules are currently used by NASA
and will be involved in aspects of the ISS program. The Spacelab and Spacehab modules
cannot be deployed free of the Space Shuttle. Illustrations of the Space Shuttle with a
Spacelab module and with a Spacehab module are provided in Figures 3 and 4. Although
both of these modules greatly expand the research capability of the Space Shuttle, even
with a Spacelab or Spacehab in its cargo bay the Space Shuttle does not constitute a true
space station (the Space Shuttle cannot stay on orbit indefinitely or provide a site for the
permanent presence of humans).

The Spacelab was first flown in 1983, and over 20 Spacelab missions have been
completed through late 1995. The Spacelab is modular and configured to meet specific
mission requirements. Its four principal components are a module, which is equipped
with laboratory equipment for each individual mission and provides a shirt-sleeve
working environment; one or more open pallets that expose(s) instruments and materials
to space; a tunnel to gain access to the module from the Space Shuttle mid-deck; and an
instrument pointing subsystem to enable instruments to be pointed with high accuracy
and stability at astronomical targets or the Earth. Twelve Space Shuttle missions have
carried the Spacelab Module. In various configurations, Spacelab equipment has been
used to conduct research in life and microgravity sciences (using the module), as well as
for space science, earth observing science, and commercial research (using a pallet and
mission-specific equipment).

Spacelsb Module
Access Tunnel Spacelab Palist ba
— | ﬁ
Sp——— *

Ny

N

EENRETEREEMANT)

Figure 3 The Space Shuttle with a Spacelab module in its payload bay. Source: NASA.
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Spacehab Single Module
Mir Docking Adapter

\

: .
U

Figure 4 The Space Shuttle with a Spacehab module in its payload bay.
Source: Spacehab, Inc.

A Spacehab module is about 40 percent the size of a Spacelab module and has
flown on the Space Shuttle three times: in June 1993, February 1994, and February 1995.
The next flight is scheduled for April 1996. It is connected to the Space Shuttle mid-deck
through a modified Spacelab tunnel, and the module accommodates various quantities,
sizes, and locations of hardware for experiments. Standard experiment accommodations
include lockers and racks similar to those used to place experiments in the Space Shuttle
mid-deck. The Spacehab module also has an optical viewport, and there is the capability
to attach equipment on the exterior of the module. As with Spacelab, provisions exist to
deliver power, cooling, and command and data resources to payloads attached inside and
outside the module.

NASA plans to use the Spacelab and Spacehab modules to augment the use of
Mir and ISS. The Spacelab module has been the site of much of the life and microgravity
sciences research performed thus far using the Space Shuttle. If cooperation with Russia
on Mir had not been initiated and if ISS were not to be built, the Spacelab or Spacehab
would most likely have continued to be used as the primary locales for U.S. research in
space using the Space Shuttle. After ISS is completed, the Spacelab and Spacehab
modules may be used to perform missions in which a long-term stay in space is not
necessary, to carry some pressurized payloads to ISS, or to return samples or materials
from ISS to Earth. The capabilities of these modules are also of interest if one seeks to
compare current U.S. capabilities with projected future capabilities that will come with
ISS.
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Space Station Freedom

As stated above, elements of the SSF and Russian plans for a next-generation Mir
Space Station were incorporated to create the design for ISS during 1993 and 1994. The
U.S.-led space station design was named Space Station Freedom in 1988, and the
configuration shown in Figure 5 and described in Table 1 in Chapter 3 is the one that
underwent a Critical Design Review (Program Incremental Design Review) in mid-1993.
Most of the major components of the SSF design are still planned for implementation on
ISS. The SSF program was led by NASA and was a collaborative effort of the United
States, the ESA, Japan, and Canada. At the end of the program, in late 1993, there was
little Russian involvement envisioned other than the possibility of using Russian Soyuz
vehicles for assured crew return.

The four major modules planned for SSF will be included on ISS, although the
U.S. Laboratory Module and Habitation Module and the European module have been
modified from the SSF design. The Japanese Experiment Module is unchanged. SSF
was to be assembled solely from payloads brought to orbit by the Space Shuttle at an
orbital inclination of 28.5° to maximize the mass of the payload that could be carried to
orbit by the Space Shuttle. SSF had a design requirement to stay operational for 30 years.

Skylab

Skylab was launched by the United States on May 14, 1973, and was inhabited for
28, 59, and 84 days by three different three-man crews. The last crew left Skylab and
returned to Earth on February 8, 1974. During the three Skylab missions, research
focused on investigations in solar astronomy, life sciences and human factors, Earth
observations, astrophysics, and materials science. Before Skylab could be reboosted by a
special propulsion module that might have been carried into orbit on an early Space
Shuttle mission, Skylab's orbit decayed, and it fell to Earth on July 11, 1979.

Skylab had five major components: a pressurized module or "orbital workshop"
that was the main habitable area, a telescope module, a docking adapter, an airlock, and
an Apollo command module (for return to Earth). Except for the Apollo command
module, Skylab was launched all at once using a Saturn V rocket, and the main module
was adapted from the shell for the third-stage rockets and propellant used to propel earlier
Apollo missions toward the moon. Skylab is shown in Figure 6, and the information
representing Skylab in Table 1 in Chapter 3 describes the space station in its operational
configuration. Skylab is the only U.S. space station built thus far. With its unique
attributes it provides a basis for comparison for current and future space station designs.

The ability of the astronauts to make repairs during extra-vehicular activity was
instrumental in ensuring that Skylab became a habitable and functional space station.
Sixty-three seconds into the launch that carried Skylab to orbit without a crew, the
meteoroid shield, that was to also shade Skylab's main module, deployed inadvertently
and was torn off by atmospheric drag. The loss of the meteoroid shield during ascent led
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to the loss of one of Skylab's solar panels, and repairs and modification were conducted
by spacewalking astronauts on the first crewed flight.

Figure 7 shows all of the space stations and platforms, described above, on the
same linear scale for comparison of the physical dimensions of each space vehicle.

Columbus Attached Laboratory or
Attached Pressurized Module

Japanese Experiment Module

Integrated Truss Segments Airlock

Thermal Control System

Solar Arrays Servicing (—{

System [—7
Pressurized
U.S. Habitation Berthing Adapter
Module U.S. Laboratory
Module

Figure 5 Space Station Freedom (as described at the 1993 Critical Design Review).

Source: NASA.
N
Airlock Y
Module . 5
4 4 Muttiple
Docking
| Adapter
S ,
|
! Z <)
W AN ¢
o °e) JEd =
/ | ; i i 1)
Radiator
Service Module
, h J (Apolio Command
Orbital Workshop Solar Arrays Apolio Module)
P for Apollo Telescope
Telescope Mount and
Solar Array for .. Mount Instruments

f3

Orbital Workshop

Figure 6 Skylab.
Source: Teledyne Brown Engineering, illustration by Robert A. Sweeney.
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Space Station Freedom

—J
- 108m

]

Space Shuttle with Spacehab

Skylab Mir Space Station

international Space Station

<+ 108m —

Figure 7 Space stations and platforms to scale (1 cm equals approximately 10 m).



Research Uses of a Space Station

From before the first launch of an artificial satellite, Sputnik 1 in 1957, many
ideas have been put forward for potential uses of a space station. These ideas have
included using a space station as an Earth and space observatory; a staging point for
interplanetary or lunar missions; a laboratory for biomedical, materials science, or
physicochemical research; as a center for testing or assembling spacecraft before they are
released into Earth orbit; and even as a destination for tourists. For the ISS, NASA and
its international partners propose areas of scientific and technological research that
require the operational presence of humans and are practical in low Earth orbit. The
primary areas for scientific research currently planned for ISS are in the space life
sciences, including the study of human adaptation to long-duration space flight and the
effect of space flight on the basic biology of plants and animals, and microgravity
sciences, including materials science, fluid mechanics, and the study of physicochemical
processes such as combustion. NASA and its partners also plan to use the ISS to
facilitate engineering research, for example, to aid in the development and testing of new
enabling technologies for space in areas such as communications, power generation,
advanced life support, and robotic and teleoperated procedures. Space systems, whether
manned or unmanned, historically have had a 5- to 10-year cycle from concept to launch
and often incorporate technologies that are already nearing obsolescence at the time of
launch. NASA intends to use ISS as a proving ground for technology evaluation and
insertion, both for replacing systems on ISS and for future spacecraft and missions.
Some traditional areas of space science research (e.g., astrophysics, geophysics, and Earth
sciences) are not -major emphases of current U.S. plans for the use of ISS. NASA
envisions that promising commercial activities will be identified as candidates during ISS
research and development programs.

This chapter focuses on NASA's work and plans for ISS. European, Japanese, and
Canadian work to date on crewed missions has been performed on the Space Shuttle and
on Soviet or Russian space stations; their research emphases for ISS are similar to

11



12 THE CAPABILITIES OF SPACE STATIONS

NASA's. The Russian plans for ISS payloads are not available, but Russia has indicated
that the research areas prominent aboard Mir will be continued on ISS.! Chapter 4 covers
Russia's work on Mir over the last 9 years. The research described below pertains only to
that performed on crewed space platforms, not on research performed using unmanned
scientific spacecraft in Earth orbit or interplanetary space. Describing in detail what has
been achieved on the various space platforms, including over 70 Space Shuttle missions
and over 19 man-years on Mir, and other space platforms such as the Salyut space
stations and Skylab, was outside the scope of the study.

Research opportunities planned for ISS are discussed briefly in the following
sections. The bibliography at the end of the report contains references to detailed reports
from the National Research Council on several of these topics and to other relevant
reports and books detailing the breadth and scope of space research in low Earth orbit.

SPACE LIFE SCIENCES

Life sciences research in space has had two thrusts: (1) the investigation of the
influence of gravity on basic biological processes, and (2) assessment of the impact and
limitation on space operations resulting from the physiological deconditioning associated
with weightlessness.2

The first thrust, the basic study of gravitational biology, requires long-duration
exposure of plants and animals, the ability to repeat experiments, a well-equipped space
laboratory, and a specialized crew. Unexpected alterations in living organisms and
biological samples, ranging from cell cultures and plants to the nervous systems of
mammals, have been observed in short-duration flights. Very little work has been done
with artificial gravity levels between 0 and 1 g, a capability that could be provided by an
onboard centrifuge, or with multiple-generation studies on the effects of space flight on
normal development using animals and plants that reproduce relatively quickly.

The second thrust, space operations medicine, may make progress through the use
of ISS for long-duration missions with a large number of crew members. ISS will have a
crew of six astronauts and cosmonauts. All crew members are likely to be available as
subjects for some investigations, and this increased opportunity to gather data may
provide the means for increased insight into the adequacy of proposed exercise protocols
and other countermeasures to enable people to return to Earth in good condition after a
prolonged mission. Experience on Mir has shown that crew members can withstand
long-term space flights (including up to 14 months—longer than projected in the crew
rotation plans for ISS) and return to Earth in generally good health. But the ISS, with its
larger set of more advanced biomedical devices, will provide the opportunity to test new

! See Grigoriev, 1995
2 For detailed information on space life sciences see the several relevant reports of the NRC's Space
Studies Board and its Committee on Space Biology and Medicine from 1987 to 1994.
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techniques to diminish the physiological adaptations to microgravity that prove
deleterious upon return to Earth (e.g., reduced bone density) and enable increased insight
into the body's overall adaptation to microgravity conditions. Results may eventually
contribute to long-term goals related to human exploration of the solar system beyond
Earth orbit, as well as to biomedical insights applicable to terrestrial applications in the
treatment of disease.

In addition to the capabilities described above that contribute to the ability to
perform life sciences research in space, other parameters that enable space life sciences
research include adequate electrical power, specialized biomedical equipment and
facilities, significant crew time for research, a crew including biomedical professionals,
an ability to send data to and communicate with researchers on the ground and the ability
to preserve biological specimens and return them to Earth on a regular basis.

MICROGRAVITY SCIENCES

Through thousands of years of observing physical phenomena and theorizing as to
cause and 400 years of organizing data scientifically to explain observed facts, gravity
has always been present. It has only been in the last 35 years that more than a few
seconds of scientific observations in the absence of gravity have been possible and even
fewer years since the first coordinated series of microgravity scientific experiments were
carried out in space. Since some initial work on Apollo and Skylab missions, NASA has
performed only relatively short-term research in microgravity on the Space Shuttle,
placing payloads in the Spacelab module, cargo bay, and mid-deck lockers. Nevertheless,
the field is still in its early phases of development. ISS will provide both the opportunity
for longer-term (e.g., 15 days to several years) microgravity experimentation and the
ability to rework and repeat experiments until consistent and reproducible results are
received.

Through the use of ISS, opportunities will exist for microgravity experimentation
in fluid mechanics and transport phenomena, combustion, biotechnology, materials
science and processing, and microgravity physics. To sustain the development and
utilization of inherently complex flight hardware and experiments capable of yielding
high-quality data in both the space life sciences and microgravity sciences research, the
following factors will be important: maintenance of the quality of the microgravity
environment, early involvement of the scientific community in experiment planning, and
shortening of the cycle from designation of a principal investigator to flight of a selected
experiment. The general capabilities necessary for conducting microgravity research in
space are similar to those necessary for life sciences research. However, microgravity
research is considered to derive greater benefits from gravity or acceleration levels as
near as possible to zero because the physicochemical processes studied are generally
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more sensitive to higher or fluctuating gravity levels than are biological systems (within
the ranges seen on an orbiting space platform).3

SPACE SCIENCES

The traditional space sciences pursued by NASA include astrophysics, planetary
science, and space physics (primarily the study of the Sun, interplanetary space, and the
magnetospheres and upper atmospheres of planets). At the present time, NASA has
limited plans and funding for the use of ISS as a space sciences observation and data
acquisition platform, but has selected one space science experiment to be conducted as an
attached payload on ISS. NASA plans to continue to rely on dedicated unmanned
spacecraft for detailed investigations of the solar system, near-Earth space, and the galaxy
and universe beyond our solar system. The U.S. and Soviet Union have both developed
technologies to enable observations from spacecraft in low Earth orbit, including crewed
space stations. In the 1970s many observations of the Sun, other astronomical bodies,
and the Earth were made from Skylab and during the 1980s and 1990s observations have
been made from the Space Shuttle. As discussed in Chapter 4 of this report, the Mir
Space Station has also been extensively utilized for such observations. The availability
of ISS as a permanently manned spacecraft can be expected to provide opportunities for
its use as a platform for the mounting of instruments or experiments to respond rapidly to
unforeseen opportunities for space sciences observations. A precedent for this kind of
potential utilization of ISS is the use of Skylab in 1973-1974 as a site for observations of
the comet Kohoutek.

EARTH OBSERVATIONS AND SCIENCES

A low orbital inclination of 28.5° (which resulted in a restricted ability to view
most of the temperate areas of the Earth), combined with funding problems, led to the
elimination of the Earth observing payloads from the Space Station Freedom (SSF)
design. With this low inclination orbit, none of the partner nations in SSF would have
been able to see or study most of their countries from orbit. In the United States, only
southern Florida, southern Texas and Hawaii would have been overflown, and none of
Japan, Canada or Europe would have been overflown. Looking toward the horizon, data
would have been able to be gathered somewhat north and south of the actual flight path,
as far north as Georgia in the United States and southern Japan in Asia. An earlier

3 Scientific and programmatic issues related to microgravity research are detailed in an NRC (1995)
report entitled Microgravity Research Opportunities for the 1990s. Especially relevant is Chapter 8,
"Flight Opportunities and Challenges. "
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version of the U.S. space station program included a separate unmanned space platform
that would have been launched into a polar orbit in order to be able to observe all of the
Earth's surface over time. This portion of the program was eliminated during a 1991
redesign of SSF.

Now that the orbital inclination of its successor, ISS, has been set at 51.6° more
of the Earth, including most of Asia and Europe and all of the United States except
Alaska, will be in view. As described in Chapter 4, the Mir Space Station, at the same
inclination, has been used and continues to be used to conduct a significant Earth
observation research program. Although funding limitations preclude the initiation of a
major NASA Earth sciences program from ISS, NASA has made some preliminary plans
for such research. The Earth Observing System (EOS), a part of NASA's Mission to
Planet Earth concept, consists of a series of polar-orbiting and low-inclination satellites
intended to provide long-term global observations of land surface, biosphere, solid Earth,
atmosphere, and oceans. As part of the Mission to Planet Earth, a single two-part
experiment, the Stratospheric Aerosol and Gas Experiment (SAGE) III, will fly one part
on ISS with a second part placed on a polar-orbiting spacecraft scheduled for launch in
1998.

SPACE TECHNOLOGY DEVELOPMENT

Many technologies for space platforms have been developed and tested on the
ground prior to launch. The availability of ISS as a long-term, permanently crewed,
orbiting testbed will support the demonstration of subsystem modifications and new
concepts and technologies. Technology tests on ISS may provide useful results without
jeopardizing spacecraft performance, as might be the case if the first use of a new
technology were in a critical application. Continuing engineering research on topics
including materials exposure, fluid processes, on-orbit assembly, electric power
generation and storage, debris protection, food and water supply and recycling, data
management, crew-return and supply vehicles, and space systems operation has the
potential to lead to more efficient and less-expensive operations in space. These research
initiatives, together with rapid advances in the capabilities and availabilities of new
commercial off-the-shelf technologies, may produce upgrades to subsystems of the initial
ISS configuration, as well as new capabilities. For example, commercial computer
hardware and software technology will support onboard sensor data processing,
converting the sensor-provided bit stream into usable information and eliminating the
requirement for high-capacity data downlinks.

Using ISS to prove new technology may help increase the use of new technology
in unrelated space endeavors. An example of this kind of technology research concerns
the high cost of command and control, including facilities and manpower. These could
possibly be reduced by greater reliance on autonomous, onboard spacecraft operation, but
there has been understandable reluctance on the part of the spacecraft controller to give
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up authority to an unproven onboard system while retaining responsibility for the health
of a spacecraft. Functioning as a testbed, ISS could demonstrate autonomous operations
at reduced risk.4

Many factors will determine the ability to pursue technology development
research, including the ability to bring large payloads to orbit and to integrate as
appropriate outside or inside the pressurized volume of a space station, the electrical
power available, the size of the space station and facilities present onboard, a crew with
appropriate expertise and time to conduct extended research programs, the ability to
involve researchers from many countries, and the ability to communicate with researchers
on the ground.

COMMERCIAL RESEARCH

The projected commercial utility of a space station has varied widely over the last
10 years. It is now generally assumed that although some useful products (e.g.,
pharmaceuticals or thin-film materials for use in electronics) may be produced on a future
space station, it is unlikely that any endeavor identified to date as a potential source of
revenue could be cost-effectively pursued if the prorated cost of the resources and
infrastructure employed were taken into account. High costs have made the
commercialization of any enterprise involving humans in space an elusive goal.

The international character and openness of the ISS program may well foster an
increase in the commercial relevance of the work performed onboard by making it easier
for companies to fly their payloads in space. However, it is currently not possible to
justify development of a space station by projecting financial return from commercial
enterprises. The true utility of a space platform to support commercial use will only be
understood after such a station is operational and a realistic assessment of potential can be
made.

4 Identification of additional engineering and technology transfer opportunities in the ISS program has
recently been addressed by the NRC Committee on the Use of the International Space Station for
Engineering Research and Technology Development.



Space Station Parameters

Summary information on the key parameters of the space stations and platforms
introduced in Chapter 1 is provided in Table 1. In this table, 33 parameters are listed, and
for each parameter a numerical value or other data point is provided for ISS (at assembly
complete), Mir (with the Priroda module attached), the Space Shuttle with a Spacelab
module, the Space Shuttle with a Spacehab module, the plans for Space Station Freedom
(which was redesigned into ISS starting in 1993), and the capabilities that existed on
Skylab. The 33 parameters listed are quantifiable or are other objective factors that, taken
together, provide a summary of the overall capabilities of each space vehicle.

Including other parameters in the table to further characterize the space platforms
was considered but rejected. In general, parameters were rejected by the committee
when: (1) the parameter was one that tends to vary widely throughout a given time
period, and including a single value in the table would have been inaccurate but including
a wide range of values would have been uninformative (e.g., CO, or humidity level in
cabin atmosphere); (2) the parameter was potentially misleading (e.g., design life); or (3)
reliable data were not available for every space platform in the table (e.g., additional data
on the microgravity environment).! In order to increase the value of the data to the

1 The following examples are representative of additional parameters considered by the committee.

Design life was not included because it is not as useful in describing a real space station as one might
think. This is partially due to the fact that, unlike most planetary or Earth-orbiting spacecraft, a space
station regularly visited by astronauts or cosmonauts can be upgraded and repaired during its time in space.
The Mir Space Station was designed for seven years on orbit, but it has been used for over nine years and
is expected to be used for two more. On the other extreme, NASA planned to use Space Station Freedom
(SSF) for 30 years, but current plans call for using its successor, the ISS, for only 10 years. One
consequence of the change from 30 to 10 years is that the projected lifetime cost of the program has been
greatly reduced, but it is likely that ISS will be used for more than 10 years if it is still functional and there
continue to be good reasons to continue to use it after 2012. In general, including design life as a
parameter would have lead to misconceptions that the SSF would have been usable exactly three times as
long as ISS will be, or that Mir would have been usable only until 1993 (if stated in 1986).

17
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reader, a brief definition explaining each parameter has been placed in the table above the
data provided on the space stations and platforms. Because the capabilities of Mir and
ISS are more directly relevant to present and future plans for research in space,
information in addition to that provided in Table 1 regarding these two space stations is
provided in more depth in Chapters 4 and 5, respectively.

The data and information provided in Table 1 are derived in part from published
documents that appear in the bibliography, unpublished sources such as NASA, and
industry presentations and information releases, as well as from communications with
NASA and industry personnel. The data have been assessed through the best technical
judgment of the committee and are based on the best information available at the time
this report was written.

Definitive data regarding microgravity levels and volumes within certain microgravity levels was sought
but was not obtainable (e.g., for ISS projections are available, but they are ellipsoids based on computer
models that are not readily converted to a conclusive description of useful volumes for research payloads).

The committee considered using the International Standard Payload Rack (ISPR) as a parameter to
describe the volume and facilities available for research but found that it was not possible to do so as the
parameter was only completely applicable to Space Station Freedom. The racks in a Spacelab are different
from the lockers in a Spacehab, and both are different from ISPR racks. ISS will have ISPRs in the U.S.,
European, and Japanese modules, but the Russian modules will have a different configuration to
accommodate pressurized payloads and are not likely to be able to be fitted with payloads designed for
ISPRs. Furthermore, because the ISPR provides more than just volume (e.g., standard power, data, and
mechanical interfaces) the committee decided that inventing a new payload volume parameter such as an
"ISPR equivalent" would be more misleading than illuminating.



Table 1 begins on the following page.
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The Mir Space Station

For 24 years Soviet/Russian space stations have demonstrated the technology
required to maintain a human presence in Earth orbit and have proven the utility of
manned experiments across a wide spectrum of scientific disciplines. Since the launch of
Salyut 1 in 1971, seven Soviet space stations have supported more than 11,000 man-days
(30 man-years) of on-orbit experience. (Three other space stations were lost during or
shortly after launch during 1972-1973 and were never occupied.) The current Mir Space
Station represents the culmination of this technological evolution and embodies many of
the operational concepts adopted by the ISS. The evolution of Soviet space stations is
shown in Figure 8.

ASSEMBLY AND DESIGN

Assembly of the Mir Space Station began in February 1986 with the launch of the
first element: the Mir core module. Originally anticipated for a seven-year life span, the
Mir orbital complex was to consist of six permanent modules serviced by manned and
unmanned logistics spacecraft and to be completed by 1990. However, after seven years
in orbit only four of the six permanent modules (Mir in 1986, Kvant 1 in 1987, Kvant 2 in
1989, and Kristall in 1990) with a total mass of more than 70 metric tons had been
launched. The launches of the remaining two modules were repeatedly delayed. As part
of Phase 1 of the ISS program, the precursor phase of international cooperation using the
Mir and the Space Shuttle prior to beginning the assembly of ISS, additional modules are
being docked to Mir. The Spektr Module was docked in June 1995, and the final Mir
module, Priroda, is scheduled for docking in December 1995. Both modules are
equipped with U.S. research payloads and equipment as well as Russian equipment.

During its first nine years in orbit, the Mir Space Station hosted 17 main
expeditions, which accumulated nearly 19 person-years of activity with crews
representing nine countries or organizations (Afghanistan, Austria, Bulgaria, ESA,
France, Germany, Japan, Syria, and the United Kingdom), in addition to the many

26
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28 THE CAPABILITIES OF SPACE STATIONS

republics of the former USSR and the now Commonwealth of Independent States. A
record 14-month mission was completed in March 1995 by Dr. Valeri Polyakov, who
spent a total of 22 months on the orbital complex. The facility has been permanently
manned since September 1989, and by April 1995, had received 71 different spacecraft of
eight types. As shown in Table 2, an average of 7-8 missions have been flown annually
from 1986 to 1994 without a launch failure (67 Soyuz and 4 Proton launch vehicles in
all); all spacecraft have successfully rendezvoused and docked with the complex. More
than 90 successful dockings have been accomplished (including those dockings
associated with repositioning spacecraft for logistical reasons).

To support the significant logistical requirements of the Mir Space Station (about
10-12 metric tons per year), the previously proven Soyuz-T manned transport and the
Progress automated cargo ferry were enhanced to create the current Soyuz-TM and
Progress-M variants. The Soyuz-TM spacecraft debuted in 1986 and had carried 20
crews of 2-3 people to the Mir Space Station by the spring of 1995. Capable of
independent flight for several days or being docked with Mir for more than six months,
the 7.1-metric-ton Soyuz-TM design will be modified to serve as an ISS crew-return
vehicle. The Soyuz-TM is rated as able to return up to three cosmonauts to an Earth site
on land or at sea.

The 7.3-metric-ton Progress-M freighter can resupply the Mir Space Station with
more than 2.5 metric tons of material, including food, air, water, propellants, clothing,
equipment, replacement parts, and a wide assortment of other cargo. More than 70
Progress (1978-1990) and Progress-M (1989-present) vehicles have been launched, and
each one has successfully docked with its intended space station (Mir or one of its Salyut
predecessors). Most dockings are automated (a crew need not even be on board the space
station), but a cosmonaut can take control and perform the operation manually, if
necessary. In 1990 the Raduga reentry capsule was introduced, permitting suitably
equipped Progress-M spacecraft with the ability of returning up to 150 kg of material to

TABLE 2 Launch and Resupply History of Mir, 1986-1994

YEAR Modules Soyuz Soyuz-TM Progress Progress-M
1986 Mir 1 1 2 0
1987 Kvant | 0 3 7 0
1988 0 3 6 0
1989 Kvant 2 0 1 2 2
1990 Kristall 0 3 1 3
1991 0 2 0 5
1992 0 2 0 5
1993 0 2 0 5
1994 0 3 0 5
TOTAL 4 1 20 18 25
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Earth. Progress-class spacecraft have also been used to perform special scientific
experiments after completing their missions to Mir (e.g., deployment of large antennas or
solar reflectors). At their end-of-life, Progress-M vehicles are loaded with refuse and
destructively deorbited, usually over the Pacific Ocean.

The Mir core module, which serves as the principal space station control element,
contains the main computers, communications equipment, kitchen and hygiene facilities,
and primary living quarters. A small airlock is available for experiments or for the
release of small satellites or refuse. The forward end of the Mir core module is
configured with five docking ports (one forward and four radial) to receive logistics
spacecraft and to attach four large permanent modules. Although the Mir core module's
main propulsion system has not been operational since the arrival of Kvant 1 in 1987, this
central module serves as the principal propellant storage unit and assists in controlling the
attitude of the entire space station.

The smaller Kvant 1 module contains a suite of scientific instruments for
astrophysical observations and materials science experiments as well as attitude control
devices (gyrodynes) designed to improve the stability of the space station and to reduce
propellant consumption. It is also the site of two girders (Sofora and Rapana) erected by
cosmonauts on the outside of Kvant 1. While both structures are used for a variety of
experiments, the taller (15 m) Sofora tower was equipped in 1992 with a roll-control
engine, the precursor to a Russian unit now under development for ISS.

The Kvant 2 spacecraft is called the "additional equipment module” due to its
large amount of equipment created for improving living conditions and operations in the
overall complex. Kvant 2 carried electrolysis units (Elektron and Vika) to provide
oxygen from recycled water; a new, large-capacity water supply system (Rodnik); two
separate water regeneration systems; new sanitation facilities; a new shower; and a
compartment designed to enhance extra-vehicular activities (EVAs). Several life science,
materials science, and Earth observation instruments are also installed on Kvant 2.

The Kristall module was created to expand experiments in five major scientific
fields: materials processing, biotechnology, biological studies, Earth observations, and
astrophysical research. As its name implies, the module's major equipment was dedicated
to materials science investigations. Kristall was also fitted out with two additional
universal docking ports (APAS-89), which evolved from the APAS-75 docking system
created for the Apollo-Soyuz Test Project in 1975. This new system was tested
successfully in 1993 and was used by Space Shuttle mission STS-71 in the first Shuttie-
Mir docking in June, 1995.

The addition of both the Spektr and Priroda modules by the end of 1995 will
increase the utility of the Mir Space Station. Spektr has recently been added to Mir, and
Priroda is scheduled for launch before the end of 1995. Both modules are equipped with
a variety of Earth observation instruments, as well as other experiments for materials
science, space technology, or space science. Equally important will be the increased
power generation capability they will provide. Their arrival will essentially complete the
Mir assembly process, resulting in an orbital facility of approximately 140 metric tons
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(see Chapter 3 for the principal parameters describing the Mir Space Station at this stage).
Current plans call for the Mir Space Station to be operated until at least late 1997, when
construction of ISS will commence.

During the nine-year operation and maintenance of the Mir Space Station, EVAs
have proven invaluable and highly effective. Forty EVAs were performed in the 1987-
1994 period (average of five per year) for a total of 344 man-hours outside the space
station. In addition to permitting the installation and removal of scientific experiments on
the exterior of the orbital facility, EVAs have been used to correct a docking problem
with the Kvant 1 module; to repair scientific instruments, a rendezvous antenna, an EVA
hatch, and a Soyuz-TM thermal control system; to test manned maneuvering units; to
install additional solar arrays; and to construct the Sofora and Rapana trusses.

RESEARCH ON MIR

The Mir Space Station provides opportunities for wide-ranging scientific and
technical experiments. Often, the Mir operational program is structured to concentrate on
specific scientific disciplines (e.g., Earth observations or materials sciences) for several
days or weeks to increase the efficiency of crew support. During the period 1992-1993,
the relative proportions of investments in experiments were technical experiments (40
percent), remote sensing and environmental experiments (24 percent), technological and
biotechnological experiments (15 percent), astrophysics experiments (13 percent), and
medical and biological experiments (8 percent). The following sections highlight some
of the hundreds of pieces of major equipment and instruments which have been operated
on the Mir space station.

Space Life Sciences

The principal life sciences experiments surround the physical well-being of the
Mir Space Station crews, including initial adaptation to the microgravity environment,
physiological changes during short- and long-duration missions, and readaptation to a 1-g
environment upon return to Earth. The extensive USSR/CIS experience on space stations
has led to the refinement of a number of practices and devices that can either monitor the
physiological effects of near-weightlessness or be employed as countermeasures to
prevent unnecessary and potentially harmful effects.

In part by trial and error, Russian medical experts have determined that two hours
of strenuous exercise (normally one hour in the moming and one hour in the evening) are
necessary to maintain acceptable circulatory and muscle conditioning. A treadmill and a
bike (Veloergometer) play a central role in this regimen. In addition, "penguin suits"
(coveralls with elastic straps) may be worn up to eight hours a day to place axial loads on
the body. Prior to the return to Earth, the Chibis pneumatic vacuum suit is worn for
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extended periods to help redistribute blood to the lower body. Several medical monitors
(e.g., Aelita, Gamma 1, and Lyulin for use inside Mir and Beta-8 for use during EVAs)
are available to compile the extensive medical database required for research into the
effects of prolonged human space flight. An ultrasonic cardiograph (Argument) has also
been employed by and on Mir cosmonauts.

Life sciences experiments with plant and animal life have been many and varied
during the history of Mir operations. In 1989 the Inkubator 2 apparatus arrived with the
Kvant 2 module and has been used in several attempts to hatch Japanese quail eggs and
monitor their development under microgravity conditions. Unfortunately, the first such
experiment in March 1990 fell far short of its goals, lasting only 22 days out of a planned
233-day investigation, when all the hatchlings failed to adapt and perished. Later
experiments with older quail proved more successful.

The Magnitogravistat installation was used to monitor the effects of varying both
gravitational and magnetic forces on plant growth, including the interaction with bacteria
in the soil. Several types of botanical units using normal soil or hydroponics (e.g.,
Bioterm, Fiton, Rost, Svet, and Svetoblok-M) have been tested with one goal: to discover
the means of sustaining plant growth as a possible source of foodstuffs in a closed
ecosystem, particularly on interplanetary voyages. Cellular fusion was the subject of
experiments with the Rekomb bioreactor in 1990. Another bioreactor, Vita, has
supported cellular cultivation experiments.

Microgravity Sciences

In addition to research concerned with the effects of microgravity on living
organisms as noted above, numerous materials processing, biotechnology, and fluid-flow
experiments have become routine for each Mir expedition. A large number of diverse
electric furnaces (e.g., Gallar, Korund-1M, Krater-V, Kristallizator, Optizon, Zona-2, and
Zona-3) have been operated using conventional and halogen lamp heating. Some of these
devices qualify as pilot production units, for example, capable of producing 5 cm
diameter gallium-arsenide crystals. Semiconductor samples from the Zona-2 and Zona-3
electric furnaces (temperatures up to 1800 C and 1400 °C, respectively) can be 3 cm in
diameter and 30-36 cm in length. Optizon was designed to produce silicon monocrystals
via crucibleless melting techniques, and Krater-V can be used for week-long experiments
to produce zinc-oxide crystals.

Biotechnological experiments, particularly those employing electrophoresis (e.g.,
EFU Robot, Ruchey, and Svetlana devices) and protein crystal growth (e.g., Aynur and
Biokrist devices) have been popular on Mir. Electrophoretic experiments have included
purification of blood and the production of high-quality interferon and anti-influenza
preparations. Mir experience has shown that the purity and separation quality of
electrophoretic experiments under microgravity conditions can be more than 100 times
better than those on Earth. The Ruchey device is a higher productivity unit and utilizes a
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technique of moving fluid through an electric field to permit four methods of
electrophoresis. Due to sample storage requirements and the need to examine the
samples as soon as possible, biotechnology experiments are often conducted on Mir
shortly before a normal crew rotation so that samples can be returned to Earth in a timely
manner. Some protein crystal growth experiments have taken as long as two and a half
months to complete.

Examinations of fluid flow in space have used the Pion-M to investigate
thermocapillary convection and Kvant 2's Volna 2 apparatus. Pion-M, which was
transferred from the Salyut 7 Space Station to the Mir Space Station in June 1986, uses a
transport tray to observe nonuniformities in fluids injected with markers. Better
understanding of fluid flow under microgravity conditions is vital to the design of water
distribution systems, propellant transfer systems, and the like. Chemical reactions in
microgravity have been the subject of experiments with the Biryuza apparatus.

Space Sciences

Mir space science encompasses a number of scientific disciplines, including
astrophysics, solar system physics, and geophysics. The arrival of the Kvant 1 module
with its 800-kg, multinational Roentgen X-ray Observatory and the USSR-Swiss Glasar
ultraviolet telescope at Mir in April 1986 was fortuitous because it closely followed the
Supernova eruption in the Large Magellanic Cloud in late February of that year. The
Roentgen X-ray Observatory contained four main instruments: (1) German HEXE high-
energy scintillation spectrometer, (2) USSR Pulsar X-1/Spektr-3 X-ray telescope, (3)
ESA Sirene-2 high-pressure gas scintillation proportional spectrometer, and (4) UK-
Netherlands TTM coded mask imaging spectrometer. The Vedma X-ray spectrometer
was developed by Germany for Kvant 1 to conduct observations of charged particle
radiation in magnetic fields of neutron stars. In 1988 the Rozhen electro-optical device
with a Paralax-Zagorka image intensifier was first used for astrophysical observations.
Kristall's arrival in 1990 brought the Glasar 2 ultraviolet telescope and the Marina
telescope to study cosmic radiation.

Several instruments have been installed in the Mir Space Station to observe
various solar-terrestrial phenomena and interactions. The Mariya magnetic spectrometer
on Kvant 1 measures high-energy electron and positron fluxes in near-Earth space. In
January 1990, two cosmonauts on an EVA installed the Arfa-E device on the exterior of
Kvant 1 to investigate the Earth's ionosphere and magnetosphere by injecting electron
beams perpendicular to the geomagnetic field. Similar experiments have been conducted
in conjunction with other, unmanned, Earth-orbiting satellites. During the testing of the
Soviet-manned maneuvering unit in 1990, one of the cosmonauts carried the Spin-6000
instrument to measure the radiation of the Mir Space Station induced by the constant
bombardment of cosmic radiation.
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Earth Observations and Sciences

Mir's orbital inclination of nearly 52° enables it to view most of the planet,
including the most densely populated zones, and thus serves as an excellent platform for
Earth observation. Its extended longevity in orbit also permits the evaluation of potential
regional or global changes. Besides frequent observations of the Earth by trained
cosmonauts, the Mir Space Station offers an array of sophisticated and high-quality
instruments to record this vital information. From hand-held Hasselblad cameras to high-
precession topographic camera systems (KAP-350, KATE-140, and Sever) to
multispectral (MKF-6MA) and high-resolution (Priroda 5) cameras to optical, infrared,
and multispectral spectrometers (MKS-M, MKS-M2, ITS-7D, Skif, and Spektr-256), the
Mir Space Station offers a full range of Earth observation devices. Typical photographic
resolutions vary from the 5 m Priroda 5 to the 10-15 m MKF-6MA to the 50 meter
KATE-140. Also available are photometers (EFO-1 and Terra) and other instruments
(AFM-2 and PCN) used especially for atmospheric studies and a video
spectropolarimeter (Gemma 2) for multipurpose remote sensing.

Mir's multifrequency observation capabilities will be increased significantly with
the attachment of the Priroda module which will carry multiband scanning radiometers
(IKAR-D and IKAR-N), a panoramic radiometer (IKAR-P), several spectrometers
(ISTOK-1 IR, MOZ-OBZOR, MSU-E, MSU-SK, and OZON-M), a synthetic aperture
radar (Travers), a French lidar (Alisa), and the refurbished German modular
optoelectronic multispectral stereo scanner (MOMS) previously flown on the U.S. Space
Shuttle. Together these instruments will support a six-point research program for (1)
determination of the atmosphere-ocean system characteristics, (2) measurements of the
land local characteristics, (3) measurements of optical characteristics of the atmosphere,
(4) investigation of the sea surface roughness state, (5) comparison of radiation and
reflection characteristics of the sea surface in the microwave range, and (6) measurements
of the concentrations of trace gases in the atmosphere.

Space Technology Development

Perhaps the broadest area of Mir scientific research is in the development of space
technologies for future applications, both in space and on the Earth. Space technologies
include not only specific systems or components but also research that will lead to new or
improved systems or components. Many of the systems operating on Mir today are the
result of years of testing and development on earlier Soviet space stations.

Major Mir systems include the Elektron and Vika electrolytic water
decomposition facilities; the gyrodynes for station attitude control; the Igla and Kurs
rendezvous systems; the APAS-89 docking system; the Luch satellite data relay system,
the Argon 16B, Salyut 5B, and EVM computer systems; the Burs, Korona, and Tranzit-A
communications and data transmission systems;, the ASPG-M movable instrument
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platform; the Orlan-DMA EVA suit; the Ljappa module relocation system; the Rodnik
water supply system; the YMK manned maneuvering unit; the VDU roll-control engine
unit; the Strela exterior crane; and the Vozdukh atmospheric CO, removal system.

A number of space technology experimental devices include the Sofora and
Rapana girders, the Yantar electron beam evaporizer, the Electrotopograph-7M used to
study protective and dielectric construction materials, the TIGR holographic television
system for studying the degradation of space station portholes, and a large number of
investigations into the effects of the near-Earth environment on various materials such as
ferromagnetics, polymers, and composites (e.g., Meduza, Ferret, Danko, Etalon-D, and
Plenk-3).



The International Space Station

The ISS will be the largest and most advanced laboratory ever built for research
in space. It is intended to return scientific, technological, political, and economic benefits
to its international partners (United States, Russia, Canada, Japan, and certain members of
the European Space Agency-Belgium, Denmark, France, Germany, Italy, Netherlands,
Norway, Spain, and the United Kingdom). The partner governments have agreed to
cooperate in the detailed design, development, operation, and utilization of this
permanently manned civil space station consistent with an intergovernmental agreement
signed in 1988 for Space Station Freedom and officially extended in 1994 to include
Russia.

ASSEMBLY AND DESIGN

Originally envisioned as Space Station Freedom, the current U.S. portion of ISS
resulted from U.S. government executive and legislative direction to NASA to
significantly reduce cost, maintenance, and complexity while expanding the opportunities
for cooperation with Russia. The current program'’s capability, cost, schedule, and risk
containment have been significantly improved by Russia’s inclusion (e.g., in the multiple
paths to orbit provided by three different Russian launch systems, Russia’s long-term
orbital experience, and its self-docking spacecraft). A new management approach that
incorporates a single prime contractor (Boeing) to the NASA program management team
is intended to integrate and control the key aspects of the program, such as cost, schedule,
and technical requirements. The ISS program is carried out by a program office and
management and engineering teams at NASA's Johnson Space Center, with the Program
Director and a relatively small staff at NASA Headquarters.

At completion, the ISS configuration will consist of 11 permanent, major
pressurized modules along with the support systems to provide power, thermal control,
life support, and all other necessary functions. The configuration of ISS when completely
assembled is shown in an exploded view in Figure 9. Seven modules will be primarily

35



"20eds01oy se[3no( [[SUUOIJA :90IN0S  "(M31AY UBISa(] [RIUSWIdU]
$661 YOTRJAl 24} 18 PaqLIdSIP Se UMOYs) uonelg aoedg [euonewaju] pajquasse A[2)9duiod ays Jo maia papojdxy ¢ amsi




THE INTERNATIONAL SPACE STATION 37

dedicated to research: the U.S. Laboratory Module, the Centrifuge Module, the ESA's
Columbus Orbital Facility (COF), the Japanese Experiment Module (JEM), and three
Russian Research Modules. At this time, these modules have varying levels of design
maturity (e.g., the JEM is essentially unchanged from the configuration planned for Space
Station Freedom, while the COF has been redesigned to be smaller, and multiple designs
and configurations are being considered for the Centrifuge Module). Three modules will
serve primarily as crew habitats and provide life-support functions: the U.S. Habitation
Module, the Russian Service Module, and the Russian Life Support Module. The
Russian Functional Cargo Block (FGB) module will provide propulsion, navigation, and
attitude control during the early assembly phases. In addition to the modules listed
above, two Soyuz-TM vehicles (or further upgraded Soyuz vehicles) will be present at all
times to facilitate crew rotation and provide the capability for rapid return to Earth of all
crew members in case of emergency. The ISS will be resupplied mainly by the Russian
Progress-M vehicle and a successor vehicle currently in development, the Progress-M2.
The Progress-M and M2 will dock often at ISS, and there will likely be one or more of
these spacecraft attached much of the time. The Space Shuttle will also dock at ISS to
rotate crew members and to deliver payloads and supplies. In addition to the permanent
modules and visiting spacecraft listed above, the ISS also features several nodes between
the modules that provide additional pressurized volume. A summary of the assembly
schedule is shown in Table 3.

TABLE 3 Milestones in the Assembly of the International Space Station

Milestone Scheduled Date | Launch Vehicle | Comments

Launch of FGB tug, first November 1997 | Proton FGB will be Russian-built, but

element of ISS U.S.-owned

Launch of Node 1 and adapter | December 1997 | Space Shuttle First Space Shuttle launch in

to FGB assembly process

Launch of Russian Service April 1998 Proton Provides first crew habitat

Module

Launch of first Soyuz - TM May 1998 Soyuz Provides crew return vehicle,
permanent crew of 3 possible

Launch of U.S. Laboratory November 1998 | Space Shuttle Provides initial U.S. research

Module capability

Launch of Japanese March 2000 Space Shuttle Provides additional research

Experiment Module capability for Japan and U.S.

Launch of European Module September 2001 | Ariane 5 Previously planned for launch

(Columbus Orbital Facility) on Space Shuttle

Launch of U.S. Habitation February 2002 Space Shuttle Provides more living space and

Module facilities for crew

1SS Configuration Complete June 2002 Space Shuttle Permanent crew of 6 possible

(launch of second crew

transfer vehicle and last

outfitting flight in assembly

sequence)
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NASA plans to assemble ISS in 44 launches, with approximately 28 launches
using the U.S. Space Shuttle, 15 using Russian launch vehicles, and one using Europe's
Ariane 5, in a phased assembly sequence over five years. Twenty-nine additional U.S.
and Russian flights during the assembly sequence are projected as necessary to rotate
crew members and for resupplying the space station with expendables such as food and
propellant.

The basic design for the completed ISS can be viewed as a reconfigured Space
Station Freedom joined to a previously planned next-generation Mir Space Station. The
ISS design uses approximately 65-75 percent of Space Station Freedom's hardware and
systems and also uses proven robust hardware from Russia such as the Service Module,
the self-contained FGB tug, the hardware for automated rendezvous and docking, the
Soyuz-TM and Progress-M, and the Soyuz launch vehicle.

ISS is to be developed as it is constructed using a three-phased timed approach.
Phase 1, as described in Chapter 4, commences before ISS assembly in space begins and
consists of a series of flights combining astronaut and cosmonaut crew activities on the
Space Shuttle, Soyuz, and the Mir Space Station. The object of this phase is to gain in-
orbit experience that will reduce the technical risk associated with assembly and
operation of ISS in a manner analogous to the Gemini program that preceded the Apollo
program. Phase 1 operations are controlled by Moscow mission control, while the
Johnson Space Center develops the capability of monitoring Mir.

Phase 2 begins the assembly of ISS with the launch of the FGB tug in December
1997 on a Proton booster, closely followed by a Space Shuttle launch to attach a
pressurized node that will serve as the interface to the U.S. side of the ISS and another
Proton launch to deliver the Russian Service Module. The Service Module is very much
like the current core module of the Mir Space Station. A Soyuz-TM crew-return vehicle
arrives on the fourth flight and will permit the space station to have a permanent crew by
providing a means for emergency return to Earth. A series of 10 more flights through
mid-1999, five U.S. and four Russian, will complete Phase 2. (Phase 2 is complete when
the U.S. Laboratory Module is completely outfitted with research equipment.) At this
stage, one of the four large U.S.-provided PV arrays will be in place, and power will also
be provided by arrays on the FGB and Service Module.

The third and final phase will complete the assembly with delivery of additional
U.S. and Russian modules as well as additional PV arrays and other supporting hardware
and systems. During Phase 3, the delivery of modules and components contributed by
Japan (the JEM-a large pressurized laboratory and outside work platform), Russia
(research modules), Canada (mobile servicing system with a robotic arm) and Europe (the
COF, a laboratory module) will also take place. On completion of Phase 3, scheduled for
2002, a permanent human presence is planned for ISS with a six-person crew and an
operational life of 10 years.
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RESEARCH ON ISS

The ISS will provide accommodations for pressurized and unpressurized payloads
as a means of satisfying users in both the scientific research and technology development
areas. Three basic categories of U.S. payloads and prospective users exist: (1)
pressurized microgravity and life sciences, (2) commercial and technology research, and
(3) unpressurized external attachment payloads. The International Standard Payload
Rack (ISPR) will be the primary location for pressurized payloads within the U.S.,
Japanese, and European modules on ISS. ISPRs have standard power, data, thermal
control, nitrogen, waste gas, fire detection, and mechanical interfaces, and can
accommodate about 1.5 m3 and 700 kg of equipment.

Research using the facilities provided by the international partners is likely to
contribute significantly to the scientific and technical use of ISS. The Japanese
contribution to ISS, the JEM, differs from the other ISS modules because, in addition to
being able to house pressurized payloads, the JEM will have its own airlock that opens to
an "exposed facility” where payloads that require placement outside the pressurized
environment (such as for scientific observations, communications research, and materials
exposure research) can be located. The JEM will also have a manipulator located outside
the module that will enable the crew to both move payloads from the airlock onto the
exposed facility and retrieve them without extravehicular activity. The NASDA payloads
inside the JEM will focus on microgravity sciences (e.g., furnaces, electrophoresis, and
protein crystallization facilities) and space life sciences research (e.g., cell culture
equipment). The ESA plans to build and attach its COF to ISS and is currently planning
facilities to conduct research in areas including human physiology (e.g., to study blood
constituents and cardiopulmonary parameters), cell and tissue cultures (with the
capability to fix and freeze samples and perform some analyses on-orbit), and
microgravity sciences (e.g., to study materials at temperatures and to study fluid
phenomena). ESA is also considering opportunities to conduct space science, Earth
observations, and technology development research with payloads located outside the
pressurized volume of ISS. Information on Russian payloads planned for ISS was not
available, but Russia has indicated that the research areas prominent aboard Mir will be
continued on ISS. Although providing world-class facilities for cooperative scientific
research in space is a primary goal of ISS, major gains may come from the practical
knowledge gained through other, more basic aspects of the program such as the assembly
of the structure in orbit.

The following sections summarize NASA's current plans for ISS. Unlike the
section in Chapter 4 that describes research that has been conducted over the last nine
years on Mir, the following sections describe plans, intentions, and projected research
that is scheduled to take place on new facilities on a new space station beginning in about
1999.
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Space Life Sciences

The drive to understand gravitational influences on biological systems is
emphasized by the predominance of life science experiments in the current plans for ISS.
The life and biomedical science facilities are scheduled to begin to join the ISS in 1999
with the addition of the Gravitational Biology Facility and the Human Research Facility
to the U.S. Laboratory Module. The primary role of each facility is to increase the
understanding of gravity's influence on basic biological processes. Research using the
Gravitational Biology Facility will focus on cell, plant, and developmental biology,
whereas research using the Human Research Facility will focus on physiological
adaptation mechanisms to microgravity.

The Gravitational Biology Facility consists of two ISPRs and modular specimen
habitats. The combined mass of 700 kg includes generic research equipment, support
systems, and analytical equipment needed to conduct research in cell, tissue, plant, and
developmental biology. Human research will be conducted using the Human Research
Facility which will focus on cardiovascular, neuropsychological, musculoskeletal,
hematological, metabolic, and immunological areas of interest. It will consist of a suite
of equipment contained in up to four racks which will be delivered to the space station
over a six-year period. The intended primary use of this latter facility is to enable work
towards the development of effective countermeasures to mitigate deleterious effects of
space flight.

The Centrifuge Facility is scheduled to join ISS in 2001 with a four-arm
centrifuge, and later in 2004 with an eight-arm centrifuge. The ability to enable research
using whole animals and plants at gravity levels between zero gand 2 g on up to 8
habitats, will provide new capabilities and promote basic research on the influence of
gravity on biological systems. NASA projects that the Centrifuge Facility and the
Gravitational Biology Facility will eventually be able to house a variety of species for
research. Several different modular habitats are planned to be able to maintain rodents;
terrestrial plants in all phases of growth; fish, amphibians and aquatic plants; animal,
plant, and microbial cell cultures and tissue cultures; bird and reptile eggs; and insects.
Refrigerators and freezers will be on board to preserve samples prior to their return to
Earth. The Life Sciences Glovebox will provide for animal and sample handling and help
enable rapid turn-around experimentation. It will be accommodated in an ISPR, provide
access for two crew members simultaneously, and will accommodate two of the modular
habitats. Video, display and the control panels are included internal and external to the
facility.

Microgravity Sciences

Since the early Apollo missions, microgravity experimentation has been
performed on materials and fluids systems. In fact, much of the design experience that
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has gone into space station microgravity facilities has evolved over decades of Apollo,
Skylab, Spacelab, and Shuttle flights. Early experiments in which astronauts rotated
water drops before flight cameras evolved into drop dynamics, single-crystal and
dendritic growth experiments, and surface-tension-driven convection experiments on
Spacelab. On ISS this type of research will be pursued as part of the research program to
be conducted in the Advanced Fluids Module of the Fluid Physics Dynamics
Facility/Modular Combustion Facility (abbreviated as the Fluids/Combustion Facility).
The planned Advanced Fluids Module experiment rack will consist of several
experiment-specific test chambers, each carrying ancillary equipment such as cameras,
laser optics, heaters, etc., to accommodate experiments in the areas of interface
configuration, thermocapillary flow, particle dispersion, and gravity-jitter (the spectral
range of oscillatory accelerations arising from crew motions, machinery, rocket firings,
and so on occurring in orbiting spacecraft).

The Combustion Module will share a facility with the Advanced Fluids Module.
It also has a history of evolution throughout the earlier days of U.S. space flight, being
generated from sounding rocket, Space Shuttle mid-deck, get-away special, and Spacelab
experiments. The Combustion Module will be contained in an experiment rack with
several viewing ports to allow for various diagnostics as required by anticipated
experiments in comparative soot-flow diagnostics, forced-flow flame spread, fiber-
supported droplet combustion, and radiative ignition and transition to spread.

As mentioned above, the Advanced Fluids Module and the Combustion Module
share the Fluids/Combustion Facility, the core of which will be delivered to the ISS in
1999. The Combustion Module will join the core at that time, but the Advanced Fluids
Module will not be available until 2001. Along with the capability to conduct research
on gases and liquids in the Fluids/Combustion Facility, the capability will also be
available for research on solidifying systems such as ceramics, electronic materials and
metals and alloys. The Furnace Facility will first become available for such experiments
on ISS in 1999 and be completed by 2002. Similar to the Fluid/Combustion Facility, the
Furnace Facility consists of a core rack that houses diagnostic controls, which will be
delivered initially with an instrument rack. When completed with a second rack, it will
contain a high-gradient furnace, thermophysical properties measurement furnace,
magnetic damping furnace, and a general purpose Bridgman furnace.

The Biotechnology Facility will continue the studies to understand complex
protein structures by having protein crystal growth as one of its two major program
components. Cell tissue studies on mammalian tissue cultures and their response to
microgravity will be supported by the second component of the program. The one-rack
facility will contain support utilities for a variety of investigation-specific experiments
and will become part of ISS in 1998.

The Microgravity Sciences Glovebox will provide the capability to manipulate
samples within an enclosed environment and the flexibility for short-duration, rapid turn-
around experiments. This glovebox will feature a command and monitoring panel and a
video unit and will be accommodated in a modified ISPR. Although planned for
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development by ESA, baseline planning has it originally interfacing with the U.S.
Laboratory Module with future accommodation being feasible in the JEM and COF.

Space Sciences

In keeping with the goals of the NASA program to understand the evolution and
makeup of planetary systems, two space science experiments are planned that will utilize
the opportunity of the long-duration collection times provided by the Mir platform to
both capture cosmic dust particles and examine the efficacy of capture media. These fall
within the external attachment payload category for the Phase 1 (Mir) portion of the
program and are designated the Mir Sample Return Experiment and the Particle Impact
Experiment. To date, one space science experiment has been selected to fly on the ISS in
2001 as an attached payload. A joint project of NASA and the U.S. Department of
Energy, the Alpha Magnetic Spectrometer (AMS) experiment will study the properties
and origin of cosmic particles and nuclei originating from outside our galaxy and look for
antimatter and dark matter. Current plans call for flying the experiment on a Space
Shuttle mission in 1998 as a precursor to the work on ISS and for operating the detector
for three years on ISS before it is returned to Earth. The AMS experiment is an
international collaboration of 37 universities and laboratories. Beyond these experiments,
the NASA Office of Space Science, which is responsible for research in astrophysics,
space physics, and planetary science, currently does not have plans to use ISS for its
research.

Earth Observations and Sciences

The ISS provides a platform for conducting ongoing Earth science programs for
the NASA Mission to Planet Earth program. As noted earlier, ISS's inclination orbit
(51.6°) permits frequent revisits to selected sites at the highly populated low and mid-
latitudes. In addition, test sites can be imaged throughout the diurnal cycle, thereby
permitting the investigation of short-lived phenomena such as the daily buildup of cloud
cover or the response of vegetation undergoing drought stress. The Stratospheric Aerosol
and Gas Experiment (SAGE) IIl is planned as an attached payload. Using the self-
calibrating solar occultation technique, SAGE III will measure profiles of atmospheric
aerosols, ozone, nitrogen dioxide, temperature, pressure, and water vapor. Lunar
occultation observations will measure key nighttime species, nitrogen trioxide, and
chlorine dioxide.
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Space Technology Development

In order to increase commitment by U.S. industry and impact national
competitiveness, commercialization and engineering will be allocated 40 percent of the
resources for research by the time Phase 3 is reached in ISS development. This is
reflected in a combination of research and development programs anticipated over the
1999-2002 time period incorporating a total of 33 space station racks, 13 in the U.S.
Laboratory Module, 10 in the JEM and 10 in the ESA Attached Pressurized Module.
Fourteen external sites with power and data will provide additional capability. An
example of such an external payload is the Hydrogen Maser Clock.

Materials processing, biotechnology, materials and environmental effects and
technology demonstrations will all be represented. A Commercial Protein Crystal
Growth and a Generic Bioprocessing Apparatus will culminate many years of
microgravity research experimentation by providing commercial products. Other planned
commercial development programs include a demonstration of a solar-dynamic power
module, processes for liquid-phase sintering, and superconductor materials in devices.



Highlights of the Differences Among Space Stations

This report has discussed the ISS and Mir and provided detailed information on
these and other space stations and platforms. Some major differences between ISS and
its predecessors stand out. Before describing some of these differences, it should be
made clear that in comparing the capabilities of ISS to Mir and the Space Shuttle, we are
largely comparing projections for the future with real data. For example, the ISS
information describes what NASA and its international partners intend to do, while the
other information describes what has been done and is being done in orbit.

The parameter of electric power is an enabling feature for space research,
especially in the life and microgravity sciences, and it may be crucial to future efforts in
technology development and commercial research. The low-user power levels on Mir
have sometimes prevented the optimal use of onboard equipment for research. At the
completion of ISS, the power level for research will be significantly greater than has
existed on any previous space platform or than was projected for the SSF in its 1993
configuration. Once all sources of power are in place, ISS should be able to satisfy the
large, intermittent demands of power-hungry equipment such as furnaces, as well as the
lower but constant demands of components such as electric motors that will be used in
refrigerators, freezers, and centrifuges.

The capacity of ISS to accommodate a permanent crew of six is double that of
Mir and 50 percent greater than the previous plans for the assembly-complete
configuration of SSF. The Space Shuttle routinely carries six or seven crew members but
cannot stay in orbit permanently. The availability of crew members to conduct
experiments remains contingent on the time that is needed to maintain and housekeep the
station and will be difficult to project as accurately as many other parameters. However,
it is clear that life sciences research is likely to benefit from the first-ever combination of
long-duration missions, a large crew, and access to a wide variety of biomedical hardware
in space—including a centrifuge facility to allow research on whole organisms in
artificial gravity—as well as from relatively frequent opportunities to return samples to
Earth.

44
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The change in orbital inclination from that planned for SSF, 28.8° degrees, to
51.6° for the ISS, while advantageous for Earth sciences and remote sensing, has the
disadvantage of limiting the payload weight capacity from non-Russian launch sites and
shortening the launch windows for Space Shuttle launches. The high inclination has also
necessitated the requirement for a number of complex on-orbit operations to provide
enough electrical power to operate the space station and perform research during
assembly. However, the high inclination allows Russian participation in the program,
including multiple Russian launch systems, and this eliminates the complete dependence
on the Space Shuttle for resupply and crew rotation that was part of the SSF program.
ISS will be resupplied primarily by the Progress-M and -M2 spacecraft that will dock
automatically to ISS. Therefore, a human crew will not be needed for routine missions to
resupply ISS with propellant and other basic needs.

Last, the anticipated interior volume of ISS is almost double the pressurized
volume that had been planned for SSF and is almost four times that of Mir. The
capabilities for research on the SSF-derived portion of ISS will be approximately the
same as were planned for SSF and additional capabilities—though not yet well-
defined—are expected to be available from the Russian modules. The large size of ISS
will require as many Space Shuttle flights as would have been necessary to assemble SSF
as well as additional flights by Russian launch systems, but clearly promises to offer the
opportunity for a large number of researchers from the partner nations to participate in the
program. With the proposed U.S., Russian, Japanese, and European laboratory modules,
as well as other facilities, and the robust system for logistical support of ISS, it will be
possible to utilize the features of a long duration in space inherent to a space station
without the power and other constraints faced currently on Mir and without the need to
return to Earth after two or three weeks as is the case with the Space Shuttle.
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Appendix

National Research Council
Commission on Engineering and Technical Systems
Aeronautics and Space Engineering Board

Committee on the Space Station

Statement of Task

The Committee will review the design and program plan of the U.S. Space Station and
identify engineering issues that would benefit from in-depth analysis. As it gains understanding
of space station technical and programmatic issues, the Committee may recommend workshops
or in-depth studies on specific issues of concern. The Committee will also accept suggestions
from NASA for specific studies. The Committee may establish panels of experts, from within
the Committee, from other NRC units, and from the aerospace community at large, to conduct
these separate efforts.  Panels will report to the complete committee as defined by their
individual charters, and the Committee will provide written findings and recommendations as
appropriate.

The Committee will meet 4-5 times each year to receive briefings from NASA and the
space station user community on the status of the program. The Committee will prepare position
papers and letter reports as appropriate, on issues that are deemed to be of general interest.

The Committee's findings and recommendations will be presented as reports to the
NASA Associate Administrator for Space Flight, the NASA Administrator, relevant
Congressional committees, and other concerned parties. These reports and position papers will
be subject to National Research Council report review procedures prior to release.

October 1, 1991
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The Committee on the Space Station
Capabilities of the Space Station Freedom and Other Space Stations

Statement of Task

For each of the last several years, the Congress has debated whether to go forward with
the NASA Space Station first proposed in 1984. Critics have often suggested that better options
exist that could provide similar capabilities sooner or at a lower cost. Such options have included
the Russian Space Station Mir, "free-flyers" that would be only occasionally visited by
astronauts, and space stations that could be based on an augmented, extended-duration, Space
Shuttle orbiter. The Committee seeks to provide information relevant to these questions by
preparing an unbiased technical study of the characteristics and resultant capabilities of the
proposed [near-term] space station options for the U.S.

The emphasis of the Committee's study and the resulting report will be on compiling and
comparing technical parameters associated with the space stations in question, and on
determining their significance with regard to the types of research most appropriate for a space
station. The Committee will:

1. Review the basic technical characteristics of the Space Station Freedom and its
proposed alternatives. This will include parameters such as overall power, pressurized
volume, the quality of the microgravity environment, and the maximum crew
supportable by the life support system.

2. Characterize the overall ability of each space station to accommodate
experiment facilities by outlining the basic categories of flight hardware that can be
supported by each design. The characterization of each design's capabilities will be
based on two sets of data:

a) information regarding resources such as power, volume, and crew time that
will remain for research and other activities after essential operations and
maintenance are performed; and

b) existing technical specifications of flight hardware that has been flown on the
Space Shuttle or other missions, and general technical requirements to support
research on a space station.

The Committee's report should aim to serve as a resource for national decision-makers
by comparing Space Station Freedom's capabilities to those of other proposed options for the
U.S. space program by highlighting the important characteristics of each design. Since no
agreed-upon set of requirements exists for a U.S. space station, the Committee will not make
judgments as to which space platform is preferred, nor will the Committee speculate on the
specific projects that could be supported by each station or evaluate each design for specific
scientific uses.

May 28, 1993












